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Figure 1: 3 sequential representations of a scene: monocular, 3D skeleton data, and full 3D reconstruction to perform gaze
analysis.

ABSTRACT
This study presents a novel framework for 3D gaze tracking tai-
lored for mixed-reality settings, aimed at enhancing joint attention
and collaborative efforts in team-based scenarios. Conventional
gaze tracking, often limited by monocular cameras and traditional
eye-tracking apparatus, struggles with simultaneous data synchro-
nization and analysis from multiple participants in group contexts.
Our proposed framework leverages state-of-the-art computer vi-
sion and machine learning techniques to overcome these obstacles,
enabling precise 3D gaze estimation without dependence on special-
ized hardware or complex data fusion. Utilizing facial recognition
and deep learning, the framework achieves real-time, tracking of
gaze patterns across several individuals, addressing common depth
estimation errors, and ensuring spatial and identity consistency
within the dataset. Empirical results demonstrate the accuracy and
reliability of our method in group environments. This provides
mechanisms for significant advances in behavior and interaction
analysis in educational and professional training applications in
dynamic and unstructured environments.
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1 INTRODUCTION
Eye-tracking technology has significantly advanced our understand-
ing of howhumans perceive and process information, particularly in
situations where cognitive processing and information acquisition
are essential components for completing tasks. This technology is
widely used in educational and professional training environments,
offering insights into the intricate relationship between cognition
and task performance [21].

In educational environments, eye-tracking technology informs
researchers and educators about students’ visual attention and
engagement patterns associated with successful learning and com-
prehension. Therefore, insights gained from eye-tracking studies
contribute to developing educational tools and methodologies that
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are more engaging and effective in improving student learning out-
comes. Additionally, a significant body of eye-tracking research ex-
amines the interplay between individual and collective gaze behav-
iors within collaborative problem-solving settings. Comprehending
these interactions is instrumental in enhancing team-based strate-
gies and communication techniques, as eye-tracking data elucidates
the distribution of visual attention among team members and their
reactions to shared visual signals during cooperative activities [22].

A lot of current eye-tracking research is predominantly confined
to individual settings [9]. Collaborative and team-based studies
present many challenges, such as the alignment of data across mul-
tiple devices, limited support from eye-tracking manufacturers, and
the substantial costs associated with engineering and developing
specialized hardware and software to support data collection and
analyses. Most eye-tracking devices are tailored for single-user
applications and do not easily generalize to studying multi-user
interactions. Additionally, the development of new methods and
technologies involves significant engineering expenses in terms of
human hours and technical expertise. This issue is compounded
by the traditionally poor scalability and high costs of eye-tracking
equipment.

This research addresses the complexities of collaborative gaze
analysis for children enacting scientific processes in mixed-reality
environments [12]. Our framework enhances the conventional gaze-
tracking approaches by incorporating 3D objects-of-interest (OOI)
encoding. This extension progresses from the traditional 2D areas-
of-interest (AOI) to a more dynamic 3D space, offering detailed
insights into both the social and environmental context of gaze
behavior. The key contributions of our work are:

• Facial Recognition We implemented face recognition to
consistently track individuals as they move around in physi-
cal space, even when they occlude one another, thus enabling
continuous monitoring of gaze patterns for multiple users.

• 3D Reconstruction and Gaze ReprojectionOur approach
includes a sophisticated 3D reconstruction of the environ-
ment, allowing us to reproject gaze data accurately within
this space. This method provides a realistic depiction of
where individuals are looking, enhancing the accuracy of
gaze tracking.

• Social Network Analysis We use the continuous and si-
multaneous gaze tracking of multiple individuals to perform
social network analysis and visualize the social dynamics
among the participating students.

Our framework enhances 3D reconstruction and robustly en-
codes OOIs in a scene, capturing dynamic user movements and
static objects like screens and furniture for in-depth identity-aware
gaze tracking, which is essential for deciphering social interactions
and engagement by monitoring how participants view each other
and interact with room objects [6]. These capabilities ensure precise
identification and analysis of gaze targets in complex, noisy environ-
ments, such as classrooms. A detailed timeline of OOI gaze events
in real-world scenarios demonstrates the framework’s practicality.
For transparency and to promote further development, we have
made the entire codebase for this project open-source, available in
«Github» repository.

2 BACKGROUND
The field of eye-tracking and gaze estimation has witnessed signif-
icant advances, evolving from hardware-centric approaches, like
the ones developed by Tobii and Eyeware, to sophisticated com-
puter vision techniques. The emergence of datasets like GazeFollow
[20] has led to the development of algorithms capable of predict-
ing gaze within complex scenes. Technologies like MIDAS [19]
and transformer-based approaches [29] have further refined accu-
racy by integrating depth and object recognition, although chal-
lenges like depth noise and computational intensity remain. Pre-
processing techniques have been instrumental in translating gaze
data into behavioral insights, particularly within social network
analysis, thereby enhancing our understanding of interaction dy-
namics across both digital and physical domains.

2.1 Eye-Tracking & Gaze Estimation
Eye-tracking, an elaborate 3D problem, has traditionally been ad-
dressed by eye-tracking manufacturers, such as Tobii, EyeWare, and
EyeLink. They include on-screen bars, webcams, and glasses. These
plug-and-play solutions have enriched the field of eye-tracking re-
search, opened many new directions, and accelerated eye-tracking
research. Within the educational domain, these tools and equip-
ment have been successfully employed to use gaze tracking analysis
to understand individuals’ learning behaviors [10, 18, 26].

Eye-tracking devices may be limited in their applications, es-
pecially when the environment, such as a collaborative learning
setting, has requirements beyond their initial design specifications.
Although some studies have attempted to use these devices in group
environments [13, 17, 31], they have not produced the same depth of
analysis as individual-focused research. This shortfall is largely due
to the complexities in integrating and synchronizing gaze data from
multiple sensors. Such integration typically requires sophisticated
engineering solutions that existing eye-tracking and multimodal
software, such as iMotions™1, do not support. Consequently, con-
ducting collaborative gaze studies often incurs significant develop-
ment costs in hardware and software, which reduces the robustness
and scalability of these approaches.

Recent developments in computer vision have produced innova-
tive systems designed to address the challenges of 3D gaze estima-
tion. Notable examples, Gaze360 [14], L2CS-Net [1], and MCGaze
[11], represent significant advances in developing robust and scal-
able approaches to gaze tracking and analysis. These systems har-
ness deep learning algorithms to estimate gaze vectors’ pitch and
yaw from standard monocular camera feeds. Such advances negate
the need for specialized eye-tracking hardware and the need for
complex data synchronization algorithms, facilitating the tracking
of multiple users’ gazes concurrently and making it easier to run
education studies in classrooms.

The field of eye-tracking has recently expanded to include in-
novative research in gaze target detection, an approach aimed at
discerning the focal point of a person’s gaze within a given scene.
This technique involves estimating the gaze-fixed object and the
gaze vector using deep learning (DL) methods. The GazeFollow
dataset [20] has been instrumental in propelling this research area
forward by providing a benchmark dataset for the training and
1https://imotions.com/
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evaluation of DL models tailored to this task. For the gaze tar-
get detection task, a single monocular image serves as the input.
This image is analyzed to predict the exact point within the visual
field where the gaze is directed. A pioneering approach by Tonini
et al. [28] has furthered this technique by incorporating MIDAS
relative depth estimation models. These models enhance the in-
put monocular images with 3D scene information, creating a more
comprehensive understanding of the space within the image.

Following the depth estimation, a series of transformer modules
are applied to perform a sequence of tasks. Initially, these transform-
ers identify and classify objects within the image. Subsequently,
they generate field-of-vision (FOV) cones, which help in visualizing
the possible areas within the scene that might be the focus of the
gaze. Finally, the transformers link the gaze vector to these objects,
effectively predicting the gaze target. However, this approach does
come with trade-offs. Many of the gaze target estimation methods
are not geared for temporal analysis; therefore, their output is not
temporally consistent or congruent. While it bypasses the need
for more complex camera setups to achieve a 3D understanding
of the scene, it may suffer from high-depth noise. This noise can
lead to inaccuracies in scenarios where precise depth information
is crucial. Moreover, the computational expense of depth estima-
tion methods needed for accurate 3D scene reconstruction can
be substantial, potentially limiting the method’s applicability in
real-time or on-device applications. Despite these challenges, the
advances in gaze target detection exemplify the dynamic nature of
eye-tracking research and its potential to enhance our interaction
with and understanding of complex visual environments.

2.2 Pre-processing Gaze
The literature on eye-tracking features various processing tech-
niques that correlate gaze data with learning outcomes [18], cog-
nitive workload estimation [16], and behaviors [3]. Eye-tracking
devices, such as the EyeLink 2000, often produce data at rates
exceeding 150 Hz, leading to the development of numerous pre-
processing techniques. These techniques refine the data into more
manageable representations and metrics that are easier to analyze
and link to educational or training contexts. According to Srivas-
tava et al. [25], eye-tracking features are categorized into three
levels: LOW, which includes fixation and saccade metrics; MID,
encompassing gaze radial direction and patterns; and HIGH, which
involves encoding areas-of-interest (AOIs). These categories are uti-
lized for various applications, including training machine learning
algorithms, computing statistics, and generating visualizations.

Each category of eye-tracking features offers specific advantages,
limitations, and demands for computational resources. LOW and
MID level features do not require additional data and are less com-
putationally intensive to process. Conversely, HIGH-level features,
which connect gaze data directly with relevant visual elements
within the environment, provide deeper insights but are more com-
plex to compute. AOI encoding, for example, involves defining the
geometry of an AOI – typically a rectangle or a circle – and deter-
mining whether a gaze point falls within it [8]. AOIs are further
classified as dynamic or static, with dynamic AOIs presenting sig-
nificant challenges as they can move within the tracking session.
Depending on the nature of the AOI – such as a person or an object

like a television – and the specific eye-tracking system employed,
tracking dynamic AOIs may require advanced deep-learning algo-
rithms for object detection.

2.3 Collaboration & Gaze Tracking
Even with the technical challenges in tracking the eye movements
of multiple individuals simultaneously, gaze analysis has become a
significant component in understanding the interactive and social
dynamics in collaborative learning using micro-gaze movements.
Joint and mutual attention are important components of collabo-
ration by aligning information acquisition and team dialog [30].
Social network analysis provides another methodology for measur-
ing team performance by analyzing gaze behaviors [13].

In individualistic learning environments, eye-tracking systems
typically interface with digital platforms such as computers or mo-
bile devices, where AOIs are defined by on-screen elements [18].
The digital nature of these AOIs simplifies tracking, as the geometry
of on-screen elements can be determined directly from the render-
ing data, circumventing the need for advanced artificial intelligence
(AI) or computer vision techniques. Conversely, collaborative en-
vironments present a contrast, often featuring co-located teams
interacting with both physical and digital elements. In such settings,
tracking of physical AOIs requires sophisticated computer vision
algorithms due to the absence of inherent digital geometries to
reference.

Using computer vision methods for 3D gaze and gaze target
estimation marks a progression in collaborative gaze analysis by
enabling the capture of multiple gaze data through a single device.
However, this approach has its limitations. Traditional 3D gaze
estimation techniques primarily provide the 3D rotation, 𝑅 ∈ R,
of gaze orientation but lack the 3D translation, 𝑡 . Moreover, these
methods often struggle with targets that move out of frame and
face challenges related to video consistency and accurate depth
estimation. To overcome these issues, we adopt a method involving
3D reconstruction to maintain spatial consistency across our gaze
analysis. This approach ensures that the gaze analysis remains
accurate and consistent. Without this additional 3D contextual
information, such as the precise locations of the gaze vectors and
the environmental layout, the 3D gaze data would typically be
projected back onto the 2D image plane, leading to a significant
loss of critical spatial information [4, 11, 27, 28].

3 PROPOSED METHOD
Our proposed method is illustrated in Figure 2. Our framework
consists of two main sequential components: (1) a face recognition
module and (2) a gaze analysis module. We start with a monocular
image and perform face detection employing a finely-tuned Multi-
task Cascaded Convolutional Network (MTCNN) model [32]. The
detected faces are enclosed within bounding boxes, which are then
tracked using a custom-designed tracking algorithm. These track-
lets serve as input to a re-identification process that utilizes FaceNet
[23] to create face embeddings and match them to a pre-established
gallery of participant faces.

This automated detection, tracking, and re-identification process
allows us to maintain consistent identification across frames, pro-
ducing reliable bounding boxes for subsequent analysis. In the gaze
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Figure 2: Framework Overview: composed of facial recognition and gaze analysis modules.

analysis module, we perform 3D reconstruction by reprojecting the
2D detected data into 3D space. As a next step, we perform 3D gaze
ray tracking, which enables us to determine the focus of each par-
ticipant’s gaze and to encode this information in relation to OOIs.
This comprehensive approach ensures accurate gaze tracking and
analysis by integrating advanced face recognition with sophisti-
cated gaze-tracking techniques, allowing for a deep understanding
of participant engagement and focus.

3.1 Face Recognition Module
Using off-the-shelf computer-vision models that were fined-tuned
to our setting (i.e., a classroom), we track the 2D position of partici-
pants (students, teachers, and researchers) in an identify-preserving
fashion. The first step of this computational pipeline (see Figure 3)
is the 2D bounding box detection of participants’ faces using a
fine-tuned MTCNN in a frame-by-frame fashion. To reduce the
need to perform a costly re-identification operation, we employed
a tracking algorithm that leverages prior knowledge, i.e., bounding
boxes of the same object should exhibit small changes from one
frame to the next. To implement this, the tracking algorithm uses
an Euclidean distance-based approach to match current and prior
detections in a computationally efficient manner. Using this track-
ing strategy we were able to link a large percentage of detections
together, except when complete or out-of-frame occlusions caused
a failed tracking and a new tracklet ID was generated. For these
cases, we had to develop a robust re-identification strategy that
used face embeddings and a prior face gallery.

Our study utilized the DeepFace library and its FaceNet model
to create vector embeddings from facial images [23, 24]. We es-
tablished a reference set of face embeddings for each participant,
known as anchor embeddings. When the tracking algorithm lost
continuity and initiated a new tracklet ID, the corresponding face
crop was embedded and compared against the gallery using co-
sine similarity, adhering to a stringent identity-matching threshold.
Unidentifiable face detections, often due to side profiles or distant
captures, were excluded from subsequent analysis to maintain data
integrity. The facial recognition module’s output is a re-identified
(ReID) tracklet that includes participant ID, bounding box coordi-
nates, and the associated face crop, facilitating participant-specific
analysis during the inference phase of the computer vision pipeline.

3.2 Gaze Analysis Module
The gaze module utilizes ReID tracklets for each frame to conduct
gaze estimation, 3D reconstruction, 2D-3D reprojection, and OOI
encoding (see Figure 4). Gaze estimation is achieved using L2CS-Net
[1], which processes face crops to output 3D gaze vectors repre-
sented by pitch and yaw angles. These vectors yield a 3D rotation
matrix for gaze orientation, but, by itself, it does not fully capture
the 3D gaze information to properly place the gaze within the 3D
scene. To overcome this, we employed ZoeDepth [2], a metric depth
estimation model that provides consistent frame-by-frame depth
estimation. By using a metric depth estimation model, we achieve
a consistent and properly scaled depth in meters. Unlike other
methods that infer depth based on facial or eyeball dimensions,
ZoeDepth offers dense pixel-level depth predictions. These predic-
tions facilitate 3D scene reconstruction by creating a mesh from
the monocular image, which is updated per frame to accurately
represent both dynamic and static elements within the classroom
environment.

To effectively reproject our 2D face tracking analyses into 3D
gaze tracking, we employ a 2D-3D reprojection method. For each
identified feature, such as a bounding box surrounding a face, we
project this information into 3D space using a transformationmatrix
M𝑓 𝑎𝑐𝑒 . The matrix’s rotation component R is an identity matrix,
as rotation adjustment is not required for gaze ray tracing. The
translation vector 𝑡 is determined by the bounding box’s centroid
𝑝𝑖𝑥P𝑓 𝑎𝑐𝑒 and the depth 𝑧 is calculated as follows:

𝑡 =


𝑋

𝑌

𝑍

 = 𝑧 ·

𝑥−𝑐𝑥
𝑓𝑥

𝑦−𝑐𝑦
𝑓𝑦

1


This process results in a 3D bounding box that is specific to

the face, and a second bounding box for the full body, which is
estimated based on fixed dimensions and orientation. We carefully
manage potential mislabeling issues by manually marking the floor
plane once per session, especially when participant heights vary.
Following this, the gaze vector, originally derived from the L2CS-
Net, is transformed into a 3D vector using the established face
bounding box as its origin and then converted into a rotation matrix
to finalize the 3D placement, denoted asM𝑔𝑎𝑧𝑒 .
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Figure 3: Face Recognition Module: With the consequent use of detecting, tracking, and re-identifying faces, ReID tracklets are
generated across a video.

Figure 4: Gaze Analysis Module: Given a monocular image, the depth image is predicted, combined with the ReID tracklets, and
then projected into a 3D scene.

For the 3D scene reconstruction, we manually place static ob-
jects such as displays, walls, and floors using a 3D annotation tool,
Vision6D. With all essential objects placed, we conduct a compre-
hensive 3D gaze analysis through gaze ray tracking. Utilizing the
transformation matrix M𝑔𝑎𝑧𝑒 , we determine the object of focus by
ray tracing the gaze vector and identifying the first object it inter-
cepts, excluding the individual’s own face and body. This process
is facilitated by Trimesh ray tracing method, encoding each gaze
fixation on dynamic participants or static objects within the scene.
In more detail, the Trimesh library is a versatile tool that facilitates
the loading and processing of triangular meshes, providing utilities
for creating, editing, and analyzing 3D geometry in an efficient and
straightforward manner. In the context of ray tracing with Trimesh,
rays can be cast from a point in space through the mesh, and the
library can calculate the points at which the rays intersect the mesh.

The ray tracing mechanism is mathematically represented by:

rtransformed (𝑡) = M𝑔𝑎𝑧𝑒

[
o + 𝑡d
1,

]
whereMgaze includes both rotation and translation components.

To find the initial point of intersection (𝑡min) with any mesh:

𝑡min = min {𝑡 | 𝑡 > 0, rtransformed (𝑡) ∩Mesh} .

Here, ∩ denotes the intersection between the ray and a mesh,
identifying the closest point of contact. This approach enables 3D-
consistent tracking of gaze interactions within a complex 3D envi-
ronment, enhancing our understanding of participant engagement
and interaction dynamics.

4 RESULTS
To test our approach in an authentic educational setting, we con-
ducted an empirical study in a middle school classroom in the
southeastern United States. The students engaged with the X en-
vironment, a mixed-reality platform designed to facilitate the en-
actment of scientific processes by students collaborating in small
groups [5]. The study was approved by the Institutional Review
Board (IRB) at Y University.

Within the X framework, students enact a scientific process,
which is displayed as a simulation on a central screen in the class-
room. The system is interactive, allowing students to take on roles
in the scientific process. Their physical movements in the prox-
imity of the display are translated into interpretable activities in
the simulation environment thus helping them interpret their real-
world movements in the context of the scientific process being
modeled. This interactive design grants students the autonomy
to make choices regarding their actions and interactions, not only
with the simulation but also with their peers, educators, researchers,
and the audience of fellow students.

The dynamic nature of the X environment yields a complex array
of interactions encompassing physical movements, gestures, eye

https://github.com/ykzzyk/vision6D
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Figure 5: Data Collection and Instrumentation in the X envi-
ronment.

contact, emotional expressions, and verbal communication. It is
important to collect comprehensive multimodal data to thoroughly
understand students’ learning behaviors and assess their advances
in grasping scientific concepts and processes. This includes video
recordings, audio captures, spatial tracking, and detailed logs from
the simulation activities conducted within this mixed-reality set-
ting.

Data Collection and Instrumentation. We employed ChimeraPy
[7], a distributed multimodal data collection framework, to collect
data from various devices and data streams. Figure 5 illustrates our
equipment setup from a top-down perspective of the room. For data
capture, we used Google Pixel 7a mobile phones to record standard
monocular videos at a resolution of 1920x1080. Aruco markers were
strategically placed within the room to facilitate 3D calibration
and ensure consistent positioning across different cameras. Audio
data was captured using wireless microphones and subsequently
integrated via an audio interface. We also gathered system logs and
screen recordings to enable a comprehensive analysis of students’
learning behaviors. For this study, we focused on analyzing a single
video to assess our methodology, with plans to incorporate a multi-
camera setup in future expansions of the research. Our method
processed the video frame-by-frame, allowing for detailed gaze
analysis of each participant, and maintaining consistent identity
tracking throughout the activity.

Recognition Error. As Figure 2 shows, the initial module of the
method is facial recognition performed by automatic identify-persistent
tracking but errors occurred. Failed re-identification occurs when
the top-1 matches face embeddings.

Our facial recognition module showed a decrease in performance
relative to the 99.2% accuracy benchmark established by FaceNet
on the Labeled Faces in the Wild dataset. Notably, the module’s
accuracy in identifying distinct individuals within our experimental
sessions varied. Recognition of the ’TEACHER’ participant was
commensurate with FaceNet’s reported accuracy. Conversely, the
accuracy markedly declined to around 80% for participants ‘S1’
and ‘S2’, who are children. This decrease is likely attributed to the
challenges associated with accurately identifying younger facial
features, which can differ significantly from adult features that the
model is predominantly trained on.

The performance was notably lower for ‘S3’, at just 44%. This
decrease is part of a broader issue related to algorithmic bias in
facial recognition technology [15]. For example, individuals many
algorithms show lower accuracy in identifying faces with darker
skin complexions. This issue arises because many facial recognition
models, including the one we employed, were trained on datasets
consisting of mostly white adult faces. This lack of diversity in
training data leads to biased performance, where the model fails to
generalize effectively across different skin tones and facial struc-
tures associated with different ethnicities.

This disparity in recognition accuracy underscores the urgent
need for developing facial recognition models that are trained on a
more diverse range of datasets. These datasets should encompass a
wide variety of ages, skin tones, and facial features to ensure more
equitable and effective performance across all user demographics.
Such improvements in model training are essential to enhance the
inclusivity and fairness of facial recognition technology.

Timeline. We constructed a comprehensive timeline to represent
the gaze data throughout the entire video, as depicted at the bottom
of Figure 6. This timeline divides the gaze data into 5-second inter-
vals, applying a median pooling strategy with a 2-second threshold
to mitigate noise and improve clarity [12]. We leveraged our facial
recognition system to generate individual timelines for each partic-
ipant, distinctly illustrating their gaze directed at the teacher, other
participants, and objects within the room. During the X game, our
analysis showed that participants predominantly focused on the
central display of the game, namely the screen. Our system adeptly
captured this focal behavior despite considerable movement by
the students and teacher, all without the necessity for calibration.
Additionally, the timeline exposed gaps primarily resulting from
obstructions in the participants’ faces, as movements within the
environment intermittently blocked the camera’s line of sight to
certain individuals.

In our study, we employed an interactive multimodal timeline
user interface [12] to display videos augmented with gaze visualiza-
tions in conjunction with the timeline. This approach enables learn-
ing sciences researchers to explore the data informatics thoroughly,
enabling them to gain a deeper understanding of the learning expe-
riences of both students and teachers. The timeline incorporates
data from the X-game state that includes students’ gaze and af-
fective states. Our methodology’s frame-by-frame analysis yields
granular temporal gaze data, facilitating the discernment of over-
arching trends and behaviors. This level of detail represents an
advance over prior studies that primarily utilized heat maps and
other aggregate visualization methods for human interpretation
and analysis. By presenting the data in a continuous, temporal man-
ner, our interface allows for the swift recognition of changes in
patterns and salient events, which can be subsequently scrutinized
by human evaluators or artificial intelligence systems.

We have identified two key events in the timeline that illustrate
the pedagogical interactions between the students and their teacher.
In Figure 6a, the teacher is seen engaging multiple students, but
one student is focused on the game screen rather than the teacher.
While this student may still be listening, the lack of mutual gaze
may hinder the student’s understanding, especially if the teacher is
using body language (e.g., pointing and gestures) or spatial cues to
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(a) Timeline Example A: Instance of a single student looking at the classroom projector, with the teacher conversing
with all students.

(b) Timeline Example B: Teacher leading instruction by gazing toward the projector and students following her
gaze and body language.

Figure 6: Examples of Multimodal Timelines with gaze visualizations.
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Figure 7: Gaze Attention Network: Describing the observer-
observed relationships via a directed graph. The edge weights
reflect the total time fixated on the observed, with the node
weights equalling the total incoming edge weights.

explain science ideas. In another scenario depicted in Fig. 6b, the
teacher stands by the projector, using hand gestures to highlight
aspects of the game and directing attention to the screen with her
gaze, indicating its importance in her instructions.

By incorporating body language and speech with gaze data, we
capture the nuances of these instructional interactions and their
effectiveness. The interactive timeline interface allows researchers
and developers to better analyze and develop support systems that
enhance teaching and learning experiences through multimodal
data integration.

Network Analysis. By encoding objects of interest (OOIs), track-
ing participants, and contextually relevant objects, we applied social
network analysis using a directed graph. In this graph, the nodes
represent the OOIs, sized according to the duration of fixation on
each object. The edges illustrate the gaze relationships, with their
widths indicating the duration of the observer-observed interaction.
Using this method, we constructed an accumulative gaze attention
network, depicted in Figure 7. Notably, the ‘DISPLAY’ node, cen-
tral to the game experience, emerged as the most prominent node
due to the significant fixation time on this object. While student-
to-student gaze was minimal and brief, we observed a noticeable
amount of gaze directed from students toward the teacher. Specif-
ically, student ‘S1’ showed the least amount of fixation on both
the ‘TEACHER’ and ‘DISPLAY’, suggesting a potential correlation
between lower gaze fixation and reduced learning outcomes, which
could be explored further to understand the impact on learning
processes.

5 CONCLUSIONS
In this research paper, we present an innovative method that inte-
grates 3D reconstruction with gaze estimation to perform detailed
gaze ray tracing. This approach is designed to support scalable
OOI encoding, which is a key component of highly contextualized

gaze analysis in collaborative settings. Our method leverages ad-
vanced computer vision techniques and deep learning models to
enhance the traditional gaze estimation processes by incorporating
dynamic (such as users) and static (such as props) objects within
a three-dimensional space. This allows for a more nuanced under-
standing of gaze dynamics in mixed-reality environments where
both physical and digital elements play critical roles.

The core of our methodology involves a two-step process, start-
ing with a facial recognition module that utilizes a fine-tuned
MTCNN model for real-time face detection, an Euclidean-based
tracking algorithm, and FaceNet for face re-identification. This is
followed by a gaze analysis module that performs a 3D reconstruc-
tion of the scene via ZoeDepth and 3D gaze estimation by utilizing
L2CS-Net. We employ 3D gaze ray tracing to accurately determine
the gaze targets within the environment, thereby enhancing our
understanding of interactive dynamics in collaborative tasks.

Our approach offers significant improvements over traditional
methods by allowing for the analysis of gaze interactions in a
spatially aware context, providing insights into how participants
in a study focus on and interact with different elements of their
environment. This methodology not only advances the field of
gaze analysis but also provides a practical framework for analyzing
collaborative interactions in educational and professional settings.

Our empirical studies validate the efficacy of our approach in
a real-world classroom environment, showcasing its proficiency
in accurately tracking and analyzing gaze patterns among partici-
pants during dynamic educational activities. This research paves
the way for novel applications of gaze analysis in intricate, real-
world settings where deciphering the nexus between attention and
interaction is vital.

Limitations. The framework’s accuracy suffers from the com-
pounding of errors across multiple machine learning models (de-
tection, tracking, re-identification, gaze estimation, and depth mea-
surement). The accumulation of errors degrades the overall system
performance, which is particularly noticeable in facial recogni-
tion where misidentification of participants can significantly skew
results. To address these inaccuracies, manual corrections of re-
identification errors were required, indicating a demand for more
refined models that are customized for particular domains.

Depth estimation, while crucial for OOI encoding, introduces
additional noise and demands high computational resources, achiev-
ing only 3 FPS on an RTX 3090 GPU without techniques to reduce
computational complexity. This bottleneck hampers the system’s
ability to operate in real-time and will mandate high computational
resources for real-world deployment.

Future Work. To address these issues, we plan to refine the re-
identification process by fine-tuning models specifically for educa-
tional domains, using classroom data to enhance the accuracy of
participant recognition. Additionally, we aim to incorporate both
monocular and stereo cameras to improve the accuracy and relia-
bility of the 3D scene reconstruction. This would potentially allow
for computationally efficient and real-time performance by opti-
mizing the depth estimation model/technique. Techniques such
as model quantization might be explored to speed up inference,
although they typically trade off some accuracy. By implement-
ing these improvements, we hope to minimize the computational
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load and increase the framework’s robustness and applicability in
real-time educational settings.
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