
FASTPOSECNN: REAL-TIME MONOCULAR CATEGORY-LEVEL
POSE AND SIZE ESTIMATION FRAMEWORK

Eduardo Davalos
Vanderbilt University

Nashville, TN
eduardo.davalos.anaya@vanderbilt.edu

Mehran Aminian
St. Mary’s University

San Antonio, TX
maminian@stmarytx.edu

ABSTRACT

The primary focus of this paper is the development of a framework for pose and size estimation of
unseen objects given a single RGB image - all in real-time. In 2019, the first category-level pose and
size estimation framework was proposed alongside two novel datasets called CAMERA and REAL.
However, current methodologies are restricted from practical use because of its long inference time
(2-4 fps). Their approach’s inference had significant delays because they used the computationally
expensive MaskedRCNN framework and Umeyama algorithm. To optimize our method and yield
real-time results, our framework uses the efficient ResNet-FPN framework alongside decoupling
the translation, rotation, and size regression problem by using distinct decoders. Moreover, our
methodology performs pose and size estimation in a global context - i.e., estimating the involved
parameters of all captured objects in the image all at once. We perform extensive testing to fully
compare the performance in terms of precision and speed to demonstrate the capability of our method.

Keywords 6D pose estimation · monocular · real-time · neural network

1 Introduction

We study rigid-body 6D pose and size estimation to detect and recognize object’s spatial information which includes
translation, rotation, and scale. With all this information, we can pinpoint the object in 3D space and understand its
relationship to the surrounding environment. This technology provides a foundation for various practical applications,
including mixed reality, robotics, and object tracking. Historically, methods in 6D pose and size estimation were
focused on feature matching through the use of algorithmic feature extractors such as SIFT (Scale-Invariant Feature
Transform) [1] and SURF (Speeded-Up Robust Features) [2].

Pose and size estimation, similar to other computer vision (CV) tasks, has undergone a complete transformation with the
emergence of deep learning and convolutional neural networks (CNN). In recent years, most proposed state-of-the-art
methods have used end-to-end neural network models whose input is an image, and their output is the final pose and
size of targeted objects.

In this work, RGB images are used as input to make multiple dense pixel-wise predictions, including the centroid,
quaternion, and size vector fields and depth regression. These dense outputs are converted into instance-wise attributes
through an aggregation routine that allows the estimation of the final pose and size. The regress parameters are
constructed from the collective information of an object’s seen pixels through the use of pixel-wise data, resulting in
robustness against occlusion and truncation. The code for this model which is open source can be found in the following
GitHub repository: https://github.com/edavalosanaya/FastPoseCNN.

The contribution of this work to the field can be summarized as follows:

• Proposing a novel CNN model for category-level 6D pose and size estimation named FastPoseCNN. Our
network generates dense pixel-wise predictions for each decoupled spatial component.

• Achieving real-time inference only requires RGB images as input, and it is robust to occlusion and truncation
through its pixel-wise driven pose and size estimation.

https://github.com/edavalosanaya/FastPoseCNN

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

(a)

(b) (c) (d)

(e) (f) (g)

(h)

Figure 1: Model’s Intermediate Data Representation. (a) Input RGB image, (b) segmentation, (c) quaternion, (d) size,
(e) depth, (f) centroid vectors, (g) 3D centroid, (h) pose and size instance data.

• Introducing SymQuaternion-Loss, a new training loss function for quaternion regression that accounts for
symmetric objects.

2 Literature Review

The field of 6D pose and size estimation has many different approaches and methodologies for estimating rigid body
spatial information. We begin our overview of the literature by an initial categorization from previous works - primarily
the problem and its solution constraints. These constraints are illustrated in the following subsections: 2.1 specifies
input data types to a model, 2.2 describes object variation, and 2.3 elaborates the throughput requirement of solutions.
Afterward, we will discuss the types of strategies and approaches used in the literature in Section 2.4 and how these
methods compare to each other in terms of performance, efficiency, and usability. Finally, we conclude our literature
review by addressing the gap mentioned in Section 2.5 using our method.

2.1 Input Data Type Differences

The first distinction among many proposed solutions is the type of input image or information they used. Standard data
inputs include RGB images, RGBD images, depth images, point clouds, and other input representations. Different data
representations provide unique challenges, complexities, and constraints.

RGB Image Input. Methods that used RGB images have gained high attention, mostly due to the commonality of
RGB cameras in modern devices. Determining the 6D pose and size of an object from a single RGB image is inherently
more challenging than using an RGBD image. It is because the missing depth information introduces perspective
ambiguity. Even for humans, an object’s unknown depth results in scaling ambiguities. Therefore, making pose and
size estimation especially difficult.

RGBD Image Input. Historically, RGBD methods have been more commonly used in the 6D pose estimation field
[3]. Methods that rely on RGBD input images utilize the 3D features to capture the pose of objects more accurately.
These methods have achieved excellent performance by using neural networks and other machine learning approaches
[4, 5, 6]. One of the downsides of this mode of input data is the expensive requirement of an RGB+depth camera.

Depth Image Input. Pure depth methods rely on the volumetric information provided in a depth image to estimate
the pose [7, 8]. These methods use lighter machine learning models such as random forest models to make their
inference extremely fast, e.g., 2 ms for [8]. These methods benefit from smaller yet efficient models as they require
fewer training samples. The major drawback of these methods is their relatively lower performance, compared to RGB
and RGBD methods, in more challenging datasets. The decreased performance is more visible when tested on the
difficult LINEMOD-OCCLUDED and LINDEMOD-TRUNCATION datasets.

2

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

Point-Clouds Input. With the development of PointNet [9], Point clouds for CV methods have gained interest
primarily because of their powerful integration of depth in a native 3D space. By lifting RGBD images into a point
cloud representation, DL models benefit more from the present depth information by learning complex 3D features
[10, 11, 12, 13]. Fusion methods combine the learned features from the point cloud and RGB image to better estimate
an object’s pose.

2.2 Category-Level vs. Instance-Level

(a) (b)

Figure 2: (a) Category-Level vs. (b) Instance-Level Dataset

The first modern datasets available for 6D pose estimation included LINEMOD [14], LINEMOD-OCCLUDED [3],
YCB-V [15], and T-LESS [16]. All of these datasets share the property of being instance-level datasets. Instance-level
implies that the dataset does not include any variants for objects of the same type. There is only one instance of each
type in an object class. This is a major flaw in SOTA pose research since it does not accurately reflect the nature of
objects found in reality. The discrepancy between real-life data and SOTA research datasets has led to the need for a 6D
pose and size category-level dataset.

The landmark publication by [17] provided the first pair of publicly available category-level datasets, named CAMERA
and REAL. CAMERA is an extensive synthetic dataset containing realistic backgrounds with rendered 3D models in
workplace-related environments. REAL is a smaller real dataset with the same object categories and similar backgrounds.
These datasets included a variety of distinct instances for each object category, as shown in Fig. 2. It added another
level of complexity to pose estimation as now models had to account for these per-instance differences and how that
might affect the effectiveness of methods.

Size Estimation Requirement

1

1
1

h

w l

size scaling

(h,w, l)

Figure 3: Size Regression

Additionally, [17] was the first paper to address category-level 6D pose and size estimation problem - specifically the
addition of the size requirement. This is because instance-level pose estimation automatically provides the scale of an
object since the exact 3D model of the object is known. However, the category-level problem adds the size requirement
to fully estimate the complete bounding box of an object to account for per-instance size variations.

2.3 Real-Time Inference

Another major concern present in pose and size estimation is the inference time of solutions. Models need to detect and
classify objects and their corresponding pose efficiently to allow applications to be built on top of the model; therefore,

3

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

this time efficiency requirement is a commonly sought feature in the CV. This was a problem for [17] as their proposed
method was only able to run within 2-4 fps on an Intel Xeon Gold 5122 CPU @ 3.60GHz desktop with an NVIDIA
TITAN Xp. The slow inference makes their MaskRCNN-NOCS model not practical for time-sensitive applications.

2.4 Related Work

Methods

Holistic Template-Matching Feature-Based

Keypoint Correspondence-Mapping Dense

hx y

y

Figure 4: Types of Methods - Simply Illustrated

Holistic Methods. Holistic methods take the approach of directly regressing the pose, size, or other object’s attributes.
To simplify the nonlinearity of the rotation space, [18, 19, 20, 21] quantized the SO(3) space - making it into a more
stable yet less accurate classification problem. It is common practice in the literature to take a mixed approach when
estimating an object’s 6D pose and size. [15] uses a CNN feature extractor to estimate the decoupled translation and
rotation. First, the extracted features were used to estimate the translation via dense keypoint regression to identify
the centroid (x, y) and dense pixel-wise regression for the direct depth (z). Second, they used the extracted features to
directly regress the rotation by approximating an object’s quaternion q.

Template-matching Methods. Before the use of DL in pose estimation, template-matching was widely used to
estimate the pose of rigid bodies [22, 23, 24, 25, 26, 27, 28, 29]. Template-matching methods use a sliding-window
algorithm that calculates a similarity score between an image and multiple perspective-based templates. The major
advantage in template-matching is its great ability to estimate the pose of texture-less objects with great performance.
However, its heavy reliance on the similarity score reduces its performance when exposed to occlusion, truncation, and
lighting variations.

Feature-based Methods. Another method used in the traditional field of 6D pose estimation, hand-crafted, and feature
engineering were used for feature extraction and matching [30, 31, 32]. However, feature extraction and matching
require texture-rich objects to accurately detect and recognize these objects. With the help of CNN’s in pose estimation,
using trainable end-to-end neural network models has become commonplace as these approaches learn more effective
methods for extracting features in more challenging scenarios [15, 33, 34, 35, 10, 17, 11, 36]. After using features
instead of templates, methods have become more robust to occlusion and truncation. Handling symmetries in objects
have posed a greater challenge to feature-based methods in part because of symmetric-induced orientation ambiguities.

Keypoint-based Methods. Keypoint-based methods rely on regressing 2D keypoints of 3D objects instead of directly
estimating the 3D translation and rotation. The use of keypoints as an intermediate representation of the pose and size
stabilizes as well simplifies the learning problem. These methods use CNNs for feature extraction and segmentation
to perform keypoint predictions through regions [34], heatmaps [37, 18], or pixel-wise predictions [33, 38]. Many
approaches use hough voting and unit-vectors within keypoint-based methods to determine the keypoints corresponding

4

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

to objects’ projected 3D bounding box edges or 3D centroid point [15, 38, 33]. While using Perspective-n-Point (PnP),
these methods can obtain the pose and size from these 2D-3D correspondence keypoints.

Correspondence-Mapping Methods. Another data representation that connects 2D-3D spaces is the direct use
of 2D-3D correspondence mapping of objects. Methods such as [17, 35, 39, 40, 3] utilize dense correspondence
mapping to regress intermediate representations, such as 3D object coordinates, that aid in determining the rotation
and translation of the objects. [17] proposed normalized object coordinate space to integrate size estimation in 3D
coordinate regression.

Dense Methods. Dense methods utilize pixel-wise predictions that contribute via a reduction function to the overall
object’s pose. These methods have been used to regress keypoints, correspondence maps, and direct components of
the pose, i.e rotation, translation, and size. Through reduction schemes, such as hough voting, RANSAC, and native
averaging, dense predictions are converted into instance-wise predictions.

2.5 Addressing the Gap in the Literature

Our research focuses on addressing the disadvantages in the groundbreaking publication of [17] - i.e., slow inference and
dependence on depth information. Their approach regressed dense correspondence mapping via a heavy MaskRCNN
framework (210 ms) and later used the Umeyama algorithm (30 ms) for pose alignment. Their approach greatly
benefited in performance by using correspondence mapping - yet this design decision slowed the model’s speed.
Our approach takes inspiration from RGB methods [38, 33, 15] by using the smaller ResNet-FPN framework and
regressing both intermediate representations and direct attributes. Through these representations, our method allows the
computation of the pose and size with greater computation efficiency. By making our method only use RGB images, we
make our approach compatible with most modern cameras. This delay reduction and depth independence are at a small
performance penalty while rendering our method useful for time-critical and hardware-limited applications.

3 Methodology

3.1 Framework Overview

x

mask
decoder

rotation
decoder

translation
decoder

size
decoder

Instance-wise Pose
and Size Fitting

RGB image

Results

pixel-wise
predictions

hough
voting

mask
breaking

encoder

(vpw, zpw)

(hpw, wpw, lpw)

(qpw)

(Spw)

(xiw, yiw, zpw)

(Ipw)

Figure 5: Model’s Overall Architecture

In our approach to 6D pose and size estimation, we decoupled the regression for each spatial component of the objects.
This lead to our architecture handling the classification, rotation, translation, and size estimation in separate decoders.
They are demonstrated in our architecture outline in Fig. 5. The decoupling of these attributes ensures stability in
training and better regression as each branch effectively adapts to the typical range of the designated data.

5

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

As shown in Fig. 5, our data pipeline is composed of CNN-generated pixel-wise predictions, mask breaking, hough
voting, and aggregation. The input image’s features are extracted by the encoder and then later used by the decoupled
decoders. These decoders generate multiple dense pixel-wise predictions for segmentation, direct regression, and unit
vector regression. The segmentation output is converted to instance masks via mask breaking. The unit vectors are
used in hough voting to generate a centroid hypothesis for a detected object. After converting the intermediate data,
aggregation takes place to match pixel-wise predictions to specific instances. In the following sections, each component
of the data pipeline will be discussed in more detail.

3.2 Pixel-Wise Predictions

Our proposed method creates dense pixel-wise predictions for all parameters of the final pose. Our individual
parameter decoders are inspired by [34, 35, 15, 33] - we noticed that small independent decoders improved stability and
performance in training without a significant increase in inference time. The mask branch creates a segmentation mask.
The rotation branch regresses dense pixel-wise quaternion predictions. We utilized quaternions here instead of rotation
matrix due to the lower number of parameters to regress. This is to ensure that the problem space is smaller and less
complex. The translation branch regressed both dense predictions for centroid unit vectors and the depth. The size
branch generates dense (h,w, l) predictions.

By using dense pixel-wise predictions with the ResNet framework, our approach generates predictions for multiple
objects in a single step - via a global context. Later in the process, the aggregation of these dense predictions is
performed in an optimized batch manner - enabling the quick translation between pixel-wise to instance-wise pose and
size information. Our method differs from other published works [17, 21] that perform 2D object detection and serially
estimate an object’s spatial attributes. Our method process multiple instances in parallel - thereby reducing the delay
when multiple objects are captured in the image.

Class Masking and Compression. Our method outputs pixel-wise predictions for each class to ensure the data of
different classes do not interfere and lower the model’s performance. Afterward, we utilize the segmentation mask
to compress the pixel-wise predictions and reduce their dimensionality to match categorical data. By doing this, our
model can effectively estimate the pose and size of multiple classes without any speed penalty.

3.3 Segmentation Mask Breaking

segmentation mask instance mask

mask breaking

Figure 6: Mask Breaking

To match the pixel-wise information between all predictions, we convert the segmentation mask to a collection of
instance masks. We utilize the GPU-accelerated implementation of scipy.ndimage.label provided in the CuPy library
[41] to perform mask breaking. Once we convert the instance mask, it’s matched with the corresponding dense
pixel-wise to each object instance captured in an image by matching it with the instance mask.

Through our ResNet-FPN implementation, class segmentation and mask breaking improve the performance and shorten
the training time of the model. It also allowed the optimization of the aggregation later down the pipeline. By breaking
the segmentation mask into instance masks, the reduction function of the pixel-wise predictions can be performed in
parallel for all instances captured in the instance masks.

3.4 Pixel-Wise Hough Voting

For our regression of objects’ x and y translation attributes, we used the intermediate centroid unit vectors that point
towards the projection of the 3D center of an object. To convert these unit vectors to proper translation parameters,

6

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

p1,0

v(p1,0)

p2,0

v(p2,0)

p2,1

p1,1

v(p1,1)

v(p2,1)

h1

h2

Figure 7: Hough Voting Scheme

we used the popular hough voting approach. For the hough voting scheme, we adapted the CUDA-accelerated
implementation proposed by PVNet [38] for our problem as it provides a fast and accurate method to process multiple
centroids in a batched fashion.

In our adapted hough voting algorithm, the pixel-wise centroid unit vectors are translated into a final c = (u, v)T

hypotheses within the image plane. The centroid unit vectors v(p) of a pixel p is defined by the relative location of the
pixel p from the centroid c, shown in Eq. 1. With this definition, the centroid unit vectors point towards the projected
3D centroid of objects.

v(p) =
c − p

||c − p||2
(1)

During the class masking and compression step, we apply bit-wise masking on pixel-wise unit vectors with the mask of
the same classes. This step prepares the data to generate N number of hypotheses. As shown in Eq. 2, we construct a
hypothesis, h, for the projected centroid by obtaining the intersection between a random pair of unit vectors.

hi = v(pi,0) ∩ v(pi,1) (2)

Once we construct N number of hypotheses, we calculate the weights for each hypothesis by incorporating the rest of
the object’s unit vectors. These weights measure confidence in the matching hypothesis. The weights are calculated by
counting the number of unit vectors that agree with the hypothesis - that is, that they point towards the hypothesis. In
Eq. 3, the θ is a threshold (usually 0.99), O is the object’s pertaining unit vector pixel-wise predictions.

wi =
∑
p∈O

I

(
(hi − p)T

||hi − p||2
v(p) ≥ θ

)
(3)

The final centroid hypothesis is determined by calculating the weighted average of the N hypotheses. By using
the hypothesis weights, the entirety of the object’s unit vectors is included in the final hypothesis calculation. This
contributes to faster learning with a smaller requirement of the number of hypotheses generated.

hfinal =

∑N
i=0 wihi∑N
i=0 wi

(4)

The resulting hfinal is later used, by combining it with the regressed depth z, to construct the translation vector t of
an object. To completely reconstruct the pose and size parameters of instances captured by the model, we perform
an aggregation step to convert the pixel-wise predictions to instance-wise, and this part will be elaborated in the next
section.

3.5 Aggregation

With the creation of dense pixel-wise predictions for the pose and size variables, we need to compress dense predictions
into instance-wise predictions to attach these parameters to captured objects. The overall aggregation routine is

7

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

Pixel-Wise Predictions

Instance-wise Mask

mask-driven
reduction
function

mask-data
matching

Instance-Wise Predictions

instance i:
quaternion: (q)
depth: (z)
size: (w,h,l)

qpw

zpw

hpw , wpw ,lpw

Figure 8: Aggregation via Masked Average

illustrated in Fig. 8. Our method utilizes the instance mask to individually extract the instance’s information using
a mask-drive reduction function. To ensure that our method remains real-time, we selected the fast and simple naive
average of the masked dense predictions. The related reduction function is shown in Eq. 5 - where a is a placeholder for
any pixel-wise predictions, O is the object’s pixel-wise predictions, and the I is the binary instance mask.

aaggregated =

∑
p∈O a(p)∑

p∈O I (I(p) = 1))
(5)

Here, we convert dense pixel-wise predictions into instance-wise predictions that allow us to create complete instance
profiles that contain the translation, size, and rotation parameters. Except for the centroid unit vectors, these are not
included in the aggregation routine - these pixel-wise predictions are handled by the hough voting step.

3.6 Ground Truth and Prediction Matching

During training, we focus on comparing the instance-wise predictions instead of the pixel-wise predictions. It shifts the
focus of the optimization problem to the estimated final pose and size parameters rather than the intermediate dense
pixel-wise predictions. Therefore, we matched the ground truth instances and the predicted instances using the 2D
intersection over union (IoU) metric. By calculating all of the 2D IoU’s between the ground truth and predicted instance
masks, we matched the instances by assigning them to their corresponding highest 2D IoU score match. We noticed
how direct optimization was more stable during our training process and prevented the model’s estimation performance
from degrading for smaller objects - due to their smaller pixel counts.

3.7 Loss Functions

Similar to our decoupling approach, we use separate loss functions for each branch of the model. Afterward, we sum
the individual contribution of each loss to determine the total. Each loss is structured to account for the range and
dimension of each parameter’s problem space.

Ltotal = Lmask + Lsym−quat + Lcentroid + Ldepth + Lscales (6)

Segmentation. The loss function used for segmentation is the summation between multi-class cross-entropy and focal
[42] loss functions.

Lmask = Lce(m,m) + Lfocal(m,m) (7)

Quaternion. For regressing the quaternion, we initially used QLoss, as shown in Eq. 8 as Lquat, referred in [43].
This loss function accounts for the internal symmetry of quaternions. However, it does not account for the symmetric
object’s axis of symmetry. We propose Lsym−quat for making the quaternion loss function fit for symmetric objects.

Lquat = log(ϵ+ 1− |q · q|) (8)

Symmetric Object Handling. A major issue when performing rotation estimation is symmetry. Many of the objects
present in the CAMERA/REAL datasets have an axis of symmetry. We explored and determined that if we directly

8

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

Figure 9: Quaternion Axis-of-Symmetry Rotation

(a) FastPoseCNN Performance Curves (b) NOCSNet Performance Curves

Figure 10: 3D detection and 6D pose estimation results for CAMERA validation

regressed the rotation without considering the axis of symmetric of certain objects, the model yielded drastically lower
performance for those objects.

As shown in Fig. 9, our strategy is to generate a set of equivalent ground truth quaternions rotated around the axis
of symmetric. The goal is to capture all possible correct quaternion orientations and concentrate the quaternion
optimization problem for symmetric objects to capture the axis of symmetry.

Therefore, we annotate the axis of symmetry for each type of symmetric object. We specify a set of rotation angles,
θ = {0◦, 1◦, ..., 359◦}, which we use to form a new set of transformation quaternion, q̂i = {q̂0◦ , ..., q̂|θ|}. By applying
the transformation quaternion to the ground truth quaternion qi = q̂iqq̂−1

i , we construct ground truth quaternions,
qi = {q0◦ , ...,q|θ|} that capture all possible valid rotations. As shown in Eq. 9, we calculate the Lquat for each qi and
use the lowest loss value.

Lsym−quat =

{
mini=i,...,|θ| Lquat (qi,q) if symmetric
Lquat (q,q)) otherwise

(9)

Centroid Unit Vectors. Early in the training phase, large quantities of outliers are generated by the untrained hough
voting scheme. Through multiple trials, we determined that L1 outperformed smooth L1 and L2 in this task. Therefore,
for regressing the projected 3D centroid, we use L1 loss on each coordinate space of the centroid.

Lcentroid = ℓ1(c|x, c|x) + ℓ1(c|y, c|y) (10)

Depth. The ambiguity of estimating the depth makes this component of the model have the lowest performance.
Additionally, minor errors in the depth estimation have significant negative effects on metrics such as 3D IoU thresholds.
We follow the stabilizing technique proposed by [33] of estimating the log(z) instead of the z. This enhances the
performance and stabilizes the training of the model.

Ldepth = ℓ1(log(z), log(z)) (11)

Size Scales. For regressing the size of objects, we use L1 loss functions on each component of the size. This ensures
the outliers in scales parameters were better handled compared to using smooth L1 or L2 loss functions.

Lscales = ℓ1(s|h, s|h) + ℓ1(s|w, s|w) + ℓ1(s|l, s|l) (12)

9

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

(a) FastPoseCNN Performance Curves (b) NOCSNet Performance Curves

Figure 11: 3D detection and 6D pose estimation results for REAL test dataset

4 Experiments and Results

CAMERA
methods NOCS OURS
3D25 90.13 66.69
3D50 87.58 32.33

5◦&5cm 38.14 67.16
10◦&5cm 61.24 84.14
10◦&10cm 62.01 91.02

(a) Validation on CAMERA25

Class OURS NOCS
3D50 5◦&5cm 10◦&10cm 3D50 5◦ & 5cm 10◦&10cm

bottle 20.22 77.15 97.88 89.18 78.99 91.56
bowl 35.08 79.18 99.13 91.36 51.18 87.77
can 26.97 81.19 99.24 85.28 78.78 97.32

laptop 54.12 71.07 93.45 85.56 16.52 63.67
camera 39.53 51.88 76.90 83.59 2.01 17.47

mug 37.00 44.03 79.53 90.53 13.50 14.28

(b) Class-Wise performance on CAMERA25

Table 1: Additional breakdown comparison information in CAMERA.

4.1 Tools and Source Code

Our experiments and model were implemented using the PyTorch framework [44] and PyTorch-Lightning [45] open
source libraries. We also used PyTorch Segmentation [46] pre-trained FPN-resnet18 model to jump start our training.
Our model adapted PVNet’s CUDA-accelerated hough voting scheme [38].

4.2 Implementation and Training

We initialize the ResNet18-FPN backbone with the weights pre-trained on Imagenet. In the first stage of training, we
focus on training the mask branch of the model. We used a batch size of 2, an initial learning rate of 1× 10−4, and a
RAdam optimizer with a weight decay of 3× 10−4. We disabled the hough voting, mask breaking, and aggregation
steps that are later used in the second stage of training. After freezing all the layers except those found in the encoder
and mask branch, we begin the speed-optimized training for 50 epochs. In the second stage of training, we trained the
entire model for another 50 epochs. We used the same hyperparameters for this stage while enabling all intermediate
steps of the model during training. The learning rate is reduced by a factor of 0.25 by a plateau scheduler in both stages.

4.3 Metrics

We adopt the metrics used in [17] to evaluate our results. These metrics include the 3D IoU and the mean average
precision (mAP) where the error is less than m cm for translation and n◦ for rotation. By considering separate metrics
for translation, rotation, and scale, we can more clearly present the performance of the model. For symmetric objects,
we apply the same technique used in the symmetric loss function by rotating the ground truth quaternion and 3D
bounding box by the axis-of-symmetric and selecting the highest performance value.

4.4 Comparison to SOTA Methods

As the following, we report and compare our category-level results to the reported values of NOCSNet [17] on both
datasets. Due to our training structure, comparisons with NOCSNet for the CAMERA25 validation dataset use the
reported data with the same training amount and type.

10

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

CAMERA25 Validation. We tested our model against the CAMERA25 validation set after only training with the
275K CAMERA training set. Our model achieves 32.33% for 3D IoU at 50% and an 5◦&5cm mAP of 66.69%. The
precision curves for these metrics are shown in Fig. 10. Note that these metrics are quite challenging because of the
perspective ambiguities introduced by the unknown depth of objects.

REAL275 Testing. After training the model on the CAMERA275 training dataset, we train an additional 50 epochs
specifically on the REAL training dataset. When tested on the REAL test dataset, our model performs 7.18% for
3D IoU at 50% and an 5◦&5cm mAP of 5.18%. The precision curves for these metrics are shown in Fig. 11. The
shifting of domains is especially tough when real data is not sufficient. Both NOCSNet and our proposed method have
significantly decreased performance when testing on the REAL test dataset.

The approach proposed by [17] yields higher performance for the 3D IoU metric primarily because of its high-
quality correspondence mapping method used to regress the object’s scales and its use of depth images. However,
correspondence mapping methods, like NOCSNet, do not handle well axis of symmetry. Our results verify this - as our
direct regression rotation method achieves higher mAP. It is also important to consider that our method regresses the
depth with good accuracy yet it negatively affects the 3D IoU metric. Our method achieves good performance while not
requiring additional depth information.

In Table 1, we present our per-class performance in 1b and a further breakdown in performance in 1a. Through the
class-wise information, it is clear that our method can capture the symmetric nature of objects better compared to [17]
using our Lquat−sym loss function.

4.5 Inference & Time-Breakdown

The primary purpose of this research is to provide a real-time monocular version of [17]. Our method can achieve an
average delay of 43ms (23 fps) during inference - allowing our method to be considered real-time for pose estimation
applications. A run-time breakdown is presented in Table 2. As far as we know, we are the first to propose a monocular
category-level pose and size estimation framework with a real-time inference.

Component Delay Time (ms)
Feature Extractor 18.570
Aggregation 4.808
Hough Voting 12.894
RT Calculation 3.769
Class Compression 2.660
Total 43.355 (23fps)
Table 2: Total Model Time-Breakdown

4.6 Limitations

In this section, we elaborate on the limitations of FastPoseCNN. First, the Hough Voting algorithm obtained from PVNet
requires a CUDA-compatible GPU device to run it. Second, to use a different camera, additional training would be
required. As referred by the pose estimation community, the camera intrinsics were baked into the model’s parameters
when we trained on the CAMERA and REAL datasets. This should not affect performance drastically, but it should be
noticed. Third, the pose and size estimated by FastPoseCNN are excellent to a certain degree. FastPoseCNN should not
be used for applications that depend on precision-critical objects’ pose and size estimation. The research presented here
is a proof-of-concept and would require further research and development to become a commercially reliable system.

5 Conclusion

In this thesis, we have introduced a real-time monocular category-level pose and size estimation framework that globally
detects and estimates an object’s pose and size parameters via dense pixel-wise predictions. FastPoseCNN is excellent
at estimating the pose of symmetric objects while running in real-time. We showed how our specialized Lsym−quat

loss function improves the training of the model and outperforms NOCSNet in rotation estimation. Our experiment and
analysis section demonstrates the performance and speed of FastPoseCNN compared to previous works. In future work,
we plan on creating a more robust intermediate size and depth interpretation to achieve higher performance in 3D IoU
and translation offset metrics. Another possible future research direction includes the use of the NVIDIA TensorRT
library [47] to further accelerate the model and increase its throughput.

11

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

Acknowledgments

References

[1] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision, 60(2):91–110,
11 2004.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features. In Aleš Leonardis,
Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006, pages 404–417, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten Rother. Learning
6D Object Pose Estimation Using 3D Object Coordinates. In David Fleet, Tomas Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 536–551, Cham, 2014. Springer International
Publishing.

[4] Nuno Pereira and Lu’A Alexandre. MaskedFusion: Mask-based 6D Object Pose Estimation. arXiv e-prints, page
arXiv:1911.07771, 11 2019.

[5] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. LatentFusion: End-to-End Differentiable
Reconstruction and Rendering for Unseen Object Pose Estimation. arXiv e-prints, page arXiv:1912.00416, 12
2019.

[6] Meng Tian, Liang Pan, Jr Ang Marcelo H, and Gim Hee Lee. Robust 6D Object Pose Estimation by Learning
RGB-D Features. arXiv e-prints, page arXiv:2003.00188, 2 2020.

[7] Caner Sahin and Tae-Kyun Kim. Category-level 6D Object Pose Recovery in Depth Images. arXiv e-prints, page
arXiv:1808.00255, 8 2018.

[8] David Joseph Tan, Nassir Navab, and Federico Tombari. 6D Object Pose Estimation with Depth Images: A
Seamless Approach for Robotic Interaction and Augmented Reality. arXiv, 2017.

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. arXiv e-prints, page arXiv:1612.00593, 12 2016.

[10] Zelin Xu, Ke Chen, and Kui Jia. W-PoseNet: Dense Correspondence Regularized Pixel Pair Pose Regression.
arXiv e-prints, page arXiv:1912.11888, 12 2019.

[11] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Mart\’\in-Mart\’\in, Cewu Lu, Li Fei-Fei, and Silvio Savarese.
DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion. arXiv e-prints, page arXiv:1901.04780, 1
2019.

[12] Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, and Simone Frintrop. 6D Object Pose Regression
via Supervised Learning on Point Clouds. arXiv e-prints, page arXiv:2001.08942, 1 2020.

[13] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, and Ales Leonardis. G2L-Net: Global to Local Network for
Real-time 6D Pose Estimation with Embedding Vector Features. arXiv e-prints, page arXiv:2003.11089, 3 2020.

[14] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir
Navab. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M Rehg, and Zhanyi Hu, editors, Computer Vision –
ACCV 2012, pages 548–562, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[15] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. PoseCNN: A Convolutional Neural Network
for 6D Object Pose Estimation in Cluttered Scenes. arXiv e-prints, page arXiv:1711.00199, 11 2017.

[16] Tomas Hodan, Pavel Haluza, Stepan Obdrzalek, Jiri Matas, Manolis Lourakis, and Xenophon Zabulis. T-LESS:
An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects. arXiv e-prints, page arXiv:1701.05498, 1
2017.

[17] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas. Normalized
Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 6 2019.

[18] Shubham Tulsiani and Jitendra Malik. Viewpoints and Keypoints. arXiv e-prints, page arXiv:1411.6067, 11 2014.
[19] Hao Su, Charles R Qi, Yangyan Li, and Leonidas Guibas. Render for CNN: Viewpoint Estimation in Images

Using CNNs Trained with Rendered 3D Model Views. arXiv e-prints, page arXiv:1505.05641, 5 2015.
[20] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab. SSD-6D: Making RGB-based

3D detection and 6D pose estimation great again. arXiv e-prints, page arXiv:1711.10006, 11 2017.

12

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

[21] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and Rudolph Triebel. Implicit
3D Orientation Learning for 6D Object Detection from RGB Images. arXiv e-prints, page arXiv:1902.01275, 2
2019.

[22] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. Real-time scalable 6DOF pose estimation for textureless
objects. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 2441–2448. IEEE, 5
2016.

[23] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang, Samarth Brahmbhatt, Mabel Zhang, Cody Phillips,
Matthieu Lecce, and Kostas Daniilidis. Single image 3D object detection and pose estimation for grasping. In
2014 IEEE International Conference on Robotics and Automation (ICRA), pages 3936–3943. IEEE, 5 2014.

[24] Chunhui Gu and Xiaofeng Ren. Discriminative Mixture-of-Templates for Viewpoint Classification. In Kostas
Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision – ECCV 2010, pages 408–421, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[25] R Rios-Cabrera and T Tuytelaars. Discriminatively Trained Templates for 3D Object Detection: A Real Time
Scalable Approach. In 2013 IEEE International Conference on Computer Vision, pages 2048–2055, 2013.

[26] D P Huttenlocher, G A Klanderman, and W J Rucklidge. Comparing images using the Hausdorff distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–863, 1993.

[27] S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, and V Lepetit. Multimodal templates
for real-time detection of texture-less objects in heavily cluttered scenes. In 2011 International Conference on
Computer Vision, pages 858–865, 2011.

[28] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir
Navab. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered
Scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M Rehg, and Zhanyi Hu, editors, Computer Vision –
ACCV 2012, pages 548–562, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[29] S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, and V Lepetit. Gradient Response Maps for
Real-Time Detection of Textureless Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(5):876–888, 2012.

[30] D G Lowe. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 1150–1157, 1999.

[31] Alvaro Collet, Manuel Martinez, and Siddhartha S Srinivasa. The MOPED framework: Object recognition and
pose estimation for manipulation. The International Journal of Robotics Research, 30(10):1284–1306, 2011.

[32] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D Object modeling and recognition using
local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer
Vision, 66:2006, 2006.

[33] Catherine Capellen, Max Schwarz, and Sven Behnke. ConvPoseCNN: Dense Convolutional 6D Object Pose
Estimation. arXiv e-prints, page arXiv:1912.07333, 12 2019.

[34] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salzmann. Segmentation-driven 6D Object Pose Estimation.
arXiv e-prints, page arXiv:1812.02541, 12 2018.

[35] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD: 6D Pose Object Detector and Refiner. arXiv e-prints,
page arXiv:1902.11020, 2 2019.

[36] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan Birchfield. Deep Object
Pose Estimation for Semantic Robotic Grasping of Household Objects. arXiv e-prints, page arXiv:1809.10790, 9
2018.

[37] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Making Deep Heatmaps Robust to Partial Occlusions for
3D Object Pose Estimation. arXiv e-prints, page arXiv:1804.03959, 4 2018.

[38] Sida Peng, Xiaowei Zhou, Yuan Liu, Haotong Lin, Qixing Huang, and Hujun Bao. PVNet: Pixel-wise Voting
Network for 6DoF Object Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
page arXiv:1812.11788, 12 2020.

[39] Omid Hosseini Jafari, Siva Karthik Mustikovela, Karl Pertsch, Eric Brachmann, and Carsten Rother. iPose:
Instance-Aware 6D Pose Estimation of Partly Occluded Objects. arXiv e-prints, page arXiv:1712.01924, 12 2017.

[40] Zhigang Li, Gu Wang, and Xiangyang Ji. CDPN: Coordinates-Based Disentangled Pose Network for Real-Time
RGB-Based 6-DoF Object Pose Estimation. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7677–7686, 2019.

13

FastPoseCNN: Real-Time Monocular Category-Level Pose and Size Estimation Framework

[41] Ryosuke Okuta, Y Unno, Daisuke Nishino, S Hido, and Crissman. CuPy : A NumPy-Compatible Library for
NVIDIA GPU Calculations. 2017.

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object Detection.
arXiv e-prints, page arXiv:1708.02002, 8 2017.

[43] Gideon Billings and Matthew Johnson-Roberson. SilhoNet: An RGB Method for 6D Object Pose Estimation.
arXiv e-prints, page arXiv:1809.06893, 9 2018.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H Wallach, H Larochelle,
A Beygelzimer, F d\textquotesingle Alché-Buc, E Fox, and R Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[45] W A Falcon and .al. PyTorch Lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning, 3,
2019.

[46] Pavel Yakubovskiy. Segmentation Models Pytorch. \url{https://github.com/qubvel/segmentation_models.pytorch},
2020.

[47] NVIDIA. NVIDIA TensorRT, 4 2021.

14

	Introduction
	Literature Review
	Input Data Type Differences
	Category-Level vs. Instance-Level
	Real-Time Inference
	Related Work
	Addressing the Gap in the Literature

	Methodology
	Framework Overview
	Pixel-Wise Predictions
	Segmentation Mask Breaking
	Pixel-Wise Hough Voting
	Aggregation
	Ground Truth and Prediction Matching
	Loss Functions

	Experiments and Results
	Tools and Source Code
	Implementation and Training
	Metrics
	Comparison to SOTA Methods
	Inference & Time-Breakdown
	Limitations

	Conclusion

