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Abstract—Multimodal data analysis provides profound insights
into behaviors and interactions within various settings. However,
the collection and analysis of this data in real-world scenarios are
intricate and resource-intensive. To streamline these processes,
we introduce ChimeraPy: an open-source, distributed streaming
platform optimized for high-throughput data transfer across
processing nodes within a computer cluster. The utility and per-
formance of ChimeraPy are showcased through two benchmark
applications, highlighting its capability to handle complex data
environments.

Index Terms—multimodal, multimedia, distributed, streaming,
artificial intelligence

I. INTRODUCTION

In today’s AI-driven era, reliable data is a key asset,
invaluable for providing insights into our world and lives.
The deployment of big data systems and advanced sensors has
enabled the collection of extensive telemetry data from various
sources, including the environment, operational systems, and
internet users. Enriching AI models with diverse media types
enhances our ability to make predictions and inferences.
However, managing heterogeneous sensor data for multimodal
analysis is complex [1].

Multimodal data analysis, crucial for understanding com-
plex behaviors and interactions, poses technical challenges in
collection and processing. It requires significant expertise and
careful engineering to maintain data integrity [1].

While distributed frameworks like Apache Flink [2] excel in
big data analysis, their complexity and deployment demands
limit their use in rapid scientific application development.
Simpler systems like Dask [3] do not support multimodal
data (MMD) collection and alignment [3]. Moreover, existing
MMD systems like PSI are not easily integrated with state-of-
the-art Python-based AI and machine learning methods [4].

These gaps in software infrastructure for multimodal anal-
ysis and the challenges of implementing distributed MMD
pipelines hinder data science practitioners and AI researchers
from leveraging advanced multimodal AI algorithms in online
applications. Addressing this, we propose a distributed frame-
work specifically designed for data and learning scientists to
deploy cutting-edge MMD pipelines, enabling efficient online
collection and processing.

A. Framing Our Approach

The increasing complexity of deep learning models pro-
cessing MMD necessitates more sophisticated pipelines for
MMD collection, streaming, and processing. Traditional MMD
collection systems often entail complex engineering costs,
impeding MMD research. ChimeraPy, our minimal setup dis-
tributed streaming platform, aims to address these challenges.
It is optimized for high throughput MMD transfer, time-
aligned MMD collection, and scalable Big MMD analytics.
Our development was guided by four key architecturally
defining requirements (ADRs).

a) Minimal Setup Costs: Many distributed computing
frameworks are intricate and time-consuming to set up, making
rapid deployment in research settings challenging. ChimeraPy
emphasizes quick deployment and prototyping.

b) Time Alignment: For effective multimodal analytics,
MMD collected from different sources must be time-aligned.
This alignment is crucial for accurate inference and prediction
in various environments.

c) Data Availability: Generic computing frameworks of-
ten overlook the distributed and heterogeneous nature of MMD
sources. ChimeraPy addresses this by ensuring the availability
and local extraction of data streams.
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d) Ethical Concerns: Uploading all collected multime-
dia data to the cloud raises significant privacy concerns.
ChimeraPy advocates for in-network de-identification of sen-
sitive data like video or GPS before internet transmission.

B. Contributions

We summarize the key contributions of this work:
• Minimal Setup Solution: ChimeraPy offers a streamlined,

Python-based setup for distributed streaming and process-
ing of scientific MDD, ensuring ease of use.

• Generality of Pipeline Design: Demonstrating its versatile
and efficient architecture, ChimeraPy excels in processing
MMD in applications such as classrooms and museums.

All code for this project is open-source under GPL-3,
accessible at https://github.com/ChimeraPy.

II. RELATED WORK

This section reviews pre-existing MMD collection tools and
general-purpose distributed (GPD) frameworks that support
complex computation tasks. We study the architectural features
and compare five currently available MMD collection tools in
terms of pipeline complexity, effective utilization of multiple
computational resources, and deployment speed. We discuss
how pre-existing GPD frameworks are not well-equipped to
be MMD collection and processing tools.

A. Multimodal Data Collection Systems

The demand for MMD processing, storage, and analysis has
led to the development of various solutions. Among these,
iMotions [5] offers a comprehensive suite for MMD research,
but its proprietary nature and licensing costs restrict scalability
and adoption. The platform also limits the integration of new
analytical methods. In contrast, open-source projects like EZ-
MMLA Toolkit [6], MediaPipes [7], SSI [8], and PSI [4]
have emerged, providing some advances over closed-source
software but still falling short of a streamlined architecture
for MMD research. EZ-MMLA and MediaPipes lack time
alignment and support only unimodal data processing.

SSI and PSI, both designed for aligning temporal signals in
multimodal data (MMD) collection, represent advancements
in real-time data gathering. SSI offers a C++ API comple-
mented by Python plugin support, while PSI is developed
on the .NET framework. They use directed acyclic graphs
(DAG) for data flows but have limitations for distributed
AI systems. SSI is limited to single-machine use and lacks
native distributed support. PSI, though allowing distributed
pipelines, is less compatible with Python AI models and
has a cumbersome setup process. In contrast, our approach
with ChimeraPy utilizes a top-down deployment with mutable
workers, offering a more efficient pipeline setup. Next, we
explore how GPD frameworks might address or adapt to MMD
collection challenges.

B. Distributed Frameworks

GPD frameworks, optimized for varied use cases, encom-
pass messaging, processing, and streaming frameworks, often
as free and open software (FOSS) with diverse architectures.

a) Messaging: Frameworks like Kafka [9] enable high-
volume data transfer across devices but are time-consuming to
set up and modify due to Java dependencies. They lack built-
in multimedia processing, necessitating additional tools, and
are less suitable for applications requiring quick deployment.

b) Computing: Computing frameworks, mostly follow-
ing the MapReduce programming model [10], excel in pro-
cessing large datasets via worker nodes, achieving data par-
allelism through distributed data processing. However, these
frameworks, such as Dask [3], focus on task parallelism and
aren’t designed for streaming workloads.

c) Streaming: Apache Spark Streaming [11] and Apache
Flink [2], integrated with Apache Kafka for data input, are
adept at structured data processing but fall short in handling
multimedia formats. They depend on external tools for data
extraction and are not ideal for rapid, low-cost setup environ-
ments.

Apache Storm [12] supports data processing and collection
but has limited Python integration, requiring manual depen-
dency management and suffering from reduced throughput in
larger data streams due to JSON subprocess communication.

In summary, our review of GPD frameworks for MMD
collection revealed gaps in current tools regarding our four
ADRs. While some frameworks show promise in specific
areas, they face challenges in multimedia support, streaming
adequacy, and comprehensive data collection. The need for
an efficient, Python-friendly MMD collection and processing
framework led to the development of ChimeraPy.

III. CHIMERAPY FRAMEWORK COMPONENTS

We developed ChimeraPy to address the limitations of
existing data collection and processing frameworks for ed-
ucational and research applications. Our design process in-
volved consultations with end-users, power users, and re-
searchers/engineers to understand their needs and concerns,
leading to several initial prototypes. These efforts culminated
in the ChimeraPy design, a managed peer-to-peer (P2P) local
cluster with human-in-the-loop controls for distributed MMD
pipeline management.

ChimeraPy operates as a DAG-modeled distributed MMD
pipeline within a local cluster. A central coordinator computer
facilitates updates and requests, while each worker in the
cluster hosts multiple graph nodes for specific operations.
The cluster’s web application dashboard allows deployment,
monitoring, and visualization of pipeline execution, serving as
the control panel.

ChimeraPy’s programming model is a DAG of user-defined
nodes, allowing complex operations for versatile data pipeline
functionality. As illustrated in Fig. 1, the task network includes
source nodes for data extraction, step nodes for data operations
with return values, and sink nodes for outputs. MMD streams,
forming the DAG’s edges, are transmitted between P2P nodes
via socket programming.

Our design integrates network connection typologies from
the outset, considering the diverse MMD entry points in
scientific research. The framework merges server-client and

https://github.com/ChimeraPy
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Fig. 1. Selected Network Typologies and Architectures: Server-client typology
supports the development of a centralized controller for the distributed cluster.
P2P typology can be leveraged to physically model the data pipelines’ DAG

P2P architectures, balancing centralized coordination and dis-
tributed processing. This combination addresses computational
bottlenecks and ensures data availability and accessibility.

a) System Design: ChimeraPy consists of two main
subsystems: (1) the Application Interface (Web controller via
REST API and CLI) and (2) the Framework Interface (a
low-level P2P networking engine), detailed in Fig. 2. The
Application Interface, built with FastAPI and Svelte, functions
as the cluster’s controller for pipeline design, deployment,
and monitoring. The Framework Interface, extending ZeroMQ,
enables real-time data streaming. This subsystem division en-
sures safe human and programmatic interactions, simplifying
the framework’s complexity.

The Application Interface features a finite state machine
(FSM), a dashboard, REST APIs, and a plugin registry. The
FSM ensures cluster operation safety, the FastAPI server
offers a REST API for dashboard and CLI-based system
administration, and the plugin registry facilitates external node
integration. The dashboard, serving as the central control
panel, includes a pipeline designer with plugins and tools for
managing the pipeline and cluster.

The Framework Interface comprises three actors: the Man-
ager, Worker, and Node. The Manager orchestrates cluster
operations and manages the cluster’s state, including deploying
the pipeline in a top-down manner. The Workers, hosting
the Nodes, follow the Manager’s instructions and operate
their HTTP servers for bidirectional communication. Nodes,
embodying DAG nodes, have three functions: setup, step,
and teardown, executed during the cluster’s lifecycle for
service management and data processing. Nodes, categorized
as source, step, or sink, communicate through WebSocket
and ZeroMQ. Pipeline outputs are stored locally for offline
analysis, with data eventually transferred to the Manager’s file
system post-session.

IV. APPLICATIONS

In this section, we provide an overview of two sample applica-
tions (face detection and sentiment analysis), representative of
the use cases we envision for the framework. While ChimeraPy

has been used to develop multiple applications 1 of varying
complexity, the two applications illustrated here showcase
two of the modalities currently supported in ChimeraPy and
address three primary concerns for measuring framework per-
formance 2 (a) Computational Uniformity: this ensures that
nodes can be randomly assigned to any Worker; (b) Artifacts
Generation: to ensure that the pipelines process and generate
meaningful artifacts for collection and archiving; and (c) Com-
putational Complexity: the pipelines should be comparable
in complexity with the ones presented in DSPBench [13]. We
use the DSPBench benchmarks to demonstrate the properties
and effectiveness of the ChimeraPy framework.

A. Face Detection

The face detection pipeline, illustrated in Fig. 3(a), is
composed of a Camera node that captures input from a
computer’s webcam. The input frames from the Camera node
are then directed to a GrayScaler node, which transforms
the BGR images into grayscale images. Following this, the
frames are passed to a FaceDetector node that identifies
faces using OpenCV’s cascade classifier [14], crops them, and
subsequently stores these cropped faces within a frame. Ul-
timately, the processed frames, containing the detected faces,
are presented through a Display node in the form of videos.

B. Sentiment Analysis

The sentiment analysis pipeline presented in Fig. 3(b),
comprises a TwitterSource node responsible for emu-
lating real-time tweets (we filter out non-English-language
tweets) generated at random and configurable intervals by
reading from a CSV file. This is followed by a Tokenizer
node, which conducts sentence tokenization using nltk [15].
The outputs from the tokenizer node are then directed to a
SentimentAnalyzer, which employs VADER [16] to com-
pute polarity scores for the tokenized sentences. Subsequently,
the polarity scores, in conjunction with the sentences, are fed
into an Aggregator node. This node aggregates the polarity
scores for the tweets and stores a CSV file containing the
tweets and the predicted aggregate sentiment.

V. BENCHMARKS

This benchmark study implements ChimeraPy on a local
area network, primarily running on low-resource computers.
Establishing resource needs and overall cluster performance
are key factors for demonstrating the feasibility of this frame-
work. We adopt the methodology presented in [13] to illustrate
the benchmark results for the two aforementioned applications.

A. Experimental Setup and Metrics

The experiments conducted in a local setup included four
Windows processors (the Workers) and a Linux processor (the
Manager). All processors used the same LAN via a TPLink
Archer AX73 router. The Worker processors had the following
specifications: (a) Manufacturer: Dell; (b) CPU: 11th Gen

1https://github.com/ChimeraPy/Pipelines
2https://github.com/ChimeraPy/Benchmarks
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configuration, execution, and data aggregation. (2) Application Interface, made up of a CLI, plugin registry, REST API, and a Web app, provides the tooling
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Camera
(Saves Video)

GrayScaler FaceDetector
(Saves Cropped Faces)

Display

(a) Face Detection Pipeline

TwitterSource Tokenizer SentimentAnalyzer Aggregator
(Saves CSV)

(b) Sentiment Analysis Pipeline

Fig. 3. Pipelines for face detection and sentiment analysis, represented as
ChimeraPy DAGs.

Intel(R) Core(TM) i7-11390H @ 3.40GHz; (c) RAM: 16GB;
and (d) Operating System: Windows 11.

The Manager instance had the following specifications: (a)
Manufacturer: Dell; (b) CPU: Intel(R) Core(TM) i9-10900X
CPU @ 3.70GHz; (c) RAM: 66GB; and (d) Operating
System: Ubuntu 22.04.

For both applications, we ran experiments with 1, 2, and
4 workers. Depending on the number of available workers,
we randomly assigned nodes to the workers in a round-robin
fashion. Each pipeline was run for 200 seconds and the runs
were repeated 5 times to balance the results. For example,
if face detection was run with two workers the nodes were
assigned randomly to each of the 2 workers (round-robin).
After a successful commit, the pipeline was run(r) 5 times
representing the experiment configuration as w2-r5-t200.

For each run of the pipelines, we recorded the Step Time,
CPU Usage, Memory Usage, and Payload Size per node and
Setup Time, Teardown Time, and Collection Time per run.
These are defined as:

• Setup Time: Time to set up a pipeline;
• Teardown Time: Time to release resources;
• Collection Time: Time to gather artifacts to Manager.
• Step Time: Average time to complete a single step;
• CPU Usage: Average CPU usage by node;
• Memory Usage: Average memory consumption; and
• Payload Size: Size of the Node’s payload.
Additionally, to get an estimate of latency, we used the

publishers and subscribers within the framework to establish
a bi-directional communication channel between machines in
the network and orchestrated an experiment where payloads
of varying sizes were sent and collected from publishers. This
provided us with an estimate of the round-trip time and hence
the latency compared with payload sizes within the framework.

B. Results and Discussion
Our performance evaluation of two applications, shown in

Fig. 5, focused on four benchmarks: per-node, per-worker,
transmission latency, and setup times. These benchmarks re-
veal how CPU usage correlates with workload intensity. In
the face detection pipeline, an expanded worker pool notably
reduces CPU usage and step time per node, typical of par-
allelism. However, this trend reverses with lighter workloads,
as observed in the sentiment analysis pipeline. Here, despite
increased CPU usage due to communication overhead, the
impact on scalability is limited. Importantly, memory usage
and data sizes are consistent across nodes, reducing the risk
of data loss.

Per-worker results in Fig. 6 show a marked decrease in CPU
and memory usage with more workers, across all workloads.
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Fig. 4. Average roundtrip time vs payload size for ChimeraPy’s SUB/PUB.

TABLE I
AVERAGE SETUP (ST), TEARDOWN (TT) AND COLLECTION (CT) TIMES

Pipeline Configuration ST (ms) TT (ms) CT (ms)

Face Detection w1-r5-t200 8744.16 8667.78 5017.09
w2-r5-t200 7651.24 8776.66 4072.13
w4-r5-t200 10528.17 9402.94 7832.72

Sentiment Analysis w1-r5-t200 7343.76 9135.10 3609.54
w2-r5-t200 9399.47 10784.67 4810.96
w4-r5-t200 8734.76 9243.51 4844.79

Fig. 4 indicates increased transmission times with larger
payloads, highlighting a limitation in streaming large payloads.
To mitigate this, ChimeraPy offers compression utilities.

For the Minimal Setup Costs ACR, we measured setup,
collection, and teardown times, shown in Tab. I. Depending on
configuration, these times range from 5–12 seconds, suitable
for environments needing quick setup. Collection time may
increase with longer pipeline run-time.

ChimeraPy excels in managing intensive tasks like video
processing, balancing resource demands with additional work-
ers, and maintaining data availability. The framework ensures
real-time processing and transmission, with a synchronized
clock for time alignment. Our tests show that ChimeraPy
can be rapidly deployed for various pipelines, effectively
using CPU resources and addressing ethical concerns through
capabilities like face-blurring. This confirms that ChimeraPy
meets our design specifications and performance criteria.

VI. FUTURE WORK AND CONCLUSION

This paper introduced the ChimeraPy framework, designed
to address gaps in MMD and GPD frameworks, focusing on
minimal setup costs, time alignment, data availability, and eth-
ical concerns. Our open-source code facilitates further MMD
research and community development. Benchmarking results
validate the framework’s effectiveness in data collection and
analysis. ChimeraPy represents a step towards democratizing
MMD streaming and processing in various research fields.

Future enhancements for ChimeraPy include advancing fault
tolerance, particularly at the Worker level, and enriching the
developer experience with features like hot-reloading and
detailed error tracebacks.

In conclusion, ChimeraPy stands as a significant devel-
opment in the realm of MMD collection and processing.
Its ability to streamline development and enhance system
analytics positions it to transform sectors like education and
healthcare. Acknowledging the ever-evolving landscape of AI,
MMD, and distributed systems, we emphasize the necessity for
continual research and innovation in these areas.
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